Design and implementation of a Robotic Arm Able to Play
“TIC-TAC-TOE” controlled by a FPGA

Norma Elva Chévez Rodriguez', Fernando Arémbula Cosio?, Joel Esquivel Villar!,
Miguel Angel Valdes'

' Departamento de Ingenierfa en computacién, Facultad de Ingenieria UNAM, MEXICO
% Laboratorio de Anélisis de Imégenes y Visualizacién, Centro de Ciencias Aplicadas y Desarrollo
Tecnolégico UNAM, MEXICO

e-mail :norma@fi-b.unam.mx

Abstract. This paper show a field programmable gate array (FPGA) based control
of a robotic arm able to play TIC-TAC-TOE. The architecture of the control scheme
is simple, and thus facilitates realization of the proposed digital controller. The de-
signed controller has been implemented using the SPARTAN-3 STARTER KIT
from Xilinx, Inc. Our “IC” can be used as a microprocessor in applications of ro-
botic arm control. Due to the high-speed nature of FPGAs, the sampling frequency
of the IC can be raised to values that cannot be reached using a conventional digital
controller based on a microcontroller. The strength of this paper is the implementa-
tion of a 9-choice algorithm that makes the robotic arm win the game. “VHDL" lan-
guage and Synthesis tool (view logic) was used to provide the FPGA with the in-
formation of the moves and the algorithm to select the most appropriate move.

Keywords: VHDL, digital design, Robotic Arm, FPGA

1 Introduction

Robots have become important due a wide range of applications from manufacturing
and surgery to the handling of hazardous materials. One of our robotic arm’s functions is
to move to a specific location or along a determined path. Moves can be performed in
nine different ways thanks to the algorithm specially design to play wisely (intelli-
gently?). A FPGA is used as control of the robotic arm with five motors and five joints to
allow flexibility, five Axes of motion: Right / Left 350 degrees; Shoulder 120 degrees;
Elbow 135 degrees; Wrist rotate CW & CCW 340 degrees; Gripper Open & Close 50
mm. Its dimensions are: Max Length Outwards = 360 mm Max Height Upwards = 510
mm Max Lifting Capability = 130g.

Norma Elva Chivez R. el. al

Field-Programmable Gate Arrays FPGAs are a special type of Application Specific In-
tegrated Circuits ASICs which can be configured or reconfigured by the user instead of
the manufacturer. One of the most important characteristics of FPGAs is fast circuit pro-
totyping. A digital device of up to thousands of logic gates can be implemented and/or
revised in days or even hours. In addition, FPGAs have a low cost of manufacturing, and
have the property of being fully testable. FPGAs are gate-array-like devices, and they are
typically used to implement multi-level logic functions. This paper shows that a FPGA
can control directly a chopper driven brush DC motor and in addition generate a sequence
of robotic arm commands.

The paper is organized as follows: Section 2 presents an overview of how and where
programmable logic devices are used, including both “CPLD” & “FPGA” devices, and
discusses the synthesis and implementation process for FPGAs. The design targets a Spar-
tan-3 “FPGA”. Section 3 takes the “VHDL” language through to a working physical
device, Section 4 shows the sensor used in the board. Section 5 presents the implementa-

tion of our control “IC”, finally, section 6 is dedicated to conclusions.

2 Overview of PLDs

By the late 70°s, standard logic device were the rage and printed circuit, boards were
loaded with them. Then someone asked the question: “What if we gave the designer the
ability to implement different interconnections in a bigger device?” This would allow the
designer to integrate many standard logic devices into one part. The two programmable
planes provided any combination of AND and OR gates and sharing of AND terms across
multiple OR’s. This architecture was very flexible, but at the time due to wafer geome-
try’s of 10um the input to output delay or propagation delay (Tpd) was high which made
the devices relatively slow. Complex Programmable Logic Devices CPLD is the way to
extend the density of the simple PLDs. The concept is to have a few PLD blocks or mac-
rocells on a single device with general purpose interconnect in between. Simple logic
paths can be implemented within a single block. More sophisticated logic will require
multiple blocks and the use of the general purpose interconnect in between to make these
connections. Field Programmable Gate Array FPGA is a regular structure of logic cells or
modules and interconnect, which can be controlled completely. This means that changes
to the circuit, its design and program can be done freely as required. There are two basic
types of FPGAs: SRAM-based reprogrammable and OTP. These two types of FPGAs
differ in the implementation of the logic cell and the mechanism used to make connec-
tions in the device. The dominant type of FPGA is SRAM-based and can be repro-
grammed as often as you choose. In fact, an SRAM-FPGA is reprogrammed every time
it’s powered up, because the FPGA is really a fancy memory chip. That’s why you need a
serial PROM or system memory with every SRAM-FPGA.

128

Design and implementation of a Robotic Arm Able to Play “TIC-TAC-TOE"” controlled ...

SRAM logic cell

OTP logic cell

a) b)
Fig. 1 a) SRAM based FPGA Logic Cell; b) OTP based FPGA Logic Cell.

In the SRAM logic cell, instead of conventional gates, an LUT determines the output
based on the values of the inputs. (In the SRAM logic cell, Figure 1a, six different com-
binations of the four inputs determine the values of the output.) SRAM bits are also used
to make connections. OTP FPGAs use anti-fuses (contrary to fuses, connections are
made, not “blown,” during programming) to make permanent connections in the chip.
Thus, OTP-FPGAs do not require SPROM, or other means to download the program to
FPGA. However, every time you make a change on design, you must throw away the
chip. The OTP logic cell is very similar to PLDs, with dedicated gates and “flip-flops”.
The availability of CAD-software such as WebPACK ISE from Xilinx Inc. and
Max+Plus II from Altera Inc. has made it much easier designing with programmable
logic. Designs can be described easily and quickly using a description language such as
ABEL, VHDL, Verilog-HDL, and AHDL or with a schematic capture tools.

3 Introduction to VHDL

VHDL is a language for describing digital electronic systems. It arose out of the
United States Government’s Very High Speed Integrated Circuits (VHSIC) program,
initiated in 1980. In the course of this program, it became clear that there was a need for 3
standard language for describing the structure and function of integrated circuits (ICs)-
Hence the VHSIC Hardware Description Language (VHDL) was developed, and subse-
quently adopted as a standard by the Institute of Electrical and Electronic Engineers
(IEEE) in the US. VHDL is designed to fill a number of needs in the design process.
Firstly, it allows description of the structure of a design and its decomposition into sub-
designs, and how those sub-designs are interconnected. Secondly, it allows the specifica-
tion of the function of designs using familiar programming language forms. Thirdly, as a
result, it allows a design to be simulated before being manufactured, so that designers can
quickly compare alternatives and test for correctness without the delay and expense of

hardware prototyping.

129

Norma Elva Chivez R. el. al

A
6 F
(@
Y
§B G H
W
-
==

(b)

Fig.2 Example of a structural description.

3.1 Describing Structure

stem can be described as a module with inputs and/or outputs.
he outputs are some function of the values on the inputs. Fig-
f this view of a digital system. The module F has two inputs,
DL terminology, we call the module F a design en-
tity, and the inputs and outputs are called ports. One way of describing the function of a
module is to describe how it is composed of sub-modules. Each of the sub-modules is an
instance of some entity, and the ports of the instances are connected using signals. Figure
2(b) shows how the entity F might be composed of instances of entities G, H and I. This
kind of description is called a structural description. Note that each of the entities G, H

and I might also have a structural description.

A digital electronic sy
The electrical values on t
ure2(a) shows an example o
A and B, and an output Y. Using VH

3.2 Describing Behavior

In many cases, it is not appropriate to describe a module structurally. One such case is
a module which is at the bottom of the hierarchy of some other structural description. For
example, if you are designing a system using IC packages bought from an 1C shop, you
do not need to describe the internal structure of an IC. In such cases, a description of the

130

Design and implementation of a Robotic Arm Able to Play “TIC-TAC-TOE" controlled ...

function performed by the module is required, without reference to its actual internal
structure. Such a description is called a functional or behavioral description. To illustrate
this, suppose that the function of the entity F in figure2-1(a) is the exclusive-or function.
Then a behavioral description of F could be the Boolean function Y =A . B + A . B More
complex behaviors cannot be described purely as a function of inputs. In systems with
feedback, the outputs are also a function of time. VHDL solves this problem by allowing
description of behavior in the form.

3.3 Discrete Event Time Model

Once the structure and behavior of a module have been s.peciﬁed, it is possible to simu-
late the module by executing its VHDL language description. This is done by simulating
the passage of time in discrete steps. At some time, a module input may be stimulated by
changing the value on an input port. The module reacts by running the code of its VHDL
language description and scheduling new values to be placed on the signals connected to
its output ports at some later time. This is called scheduling a transaction on that signal. If
the new value is different from the previous value on the signal, an event occurs, and
other modules with input ports connected to the signal may be activated. The simulation
starts with an initialization phase, and then proceeds by repeating a two-stage simulation
cycle. In the initialization phase, all signals are given initial values, the simulation time is
set to zero, and each module’s behaviors program is executed. This usually results in
transactions being scheduled on output signals for some later time. In the first stage of a
simulation cycle, the simulated time is advanced to the earliest time at which a transaction
has been scheduled. All transactions scheduled for that time are executed, and this may
cause events to occur on some signals. In the second stage, all modules which react to
events occurring in the first stage have their behaviors program executed. These programs
will usually schedule further transactions on their output signals. When all of the behav-
iors programs have finished executing, the simulation cycle is repeated. If there are no
more scheduled transactions, the whole simulation is completed. The purpose of the simu-
lation is to gather information about the changes in system state over time. This can be
done by running the simulation under the control of a simulation monitor. The monitor
allows signals and other state information to be viewed or stored in a trace file for later
analysis. It may also allow interactive stepping of the simulation process, much like an
interactive program debugger.

4 Control design and implementation
Due to limitation on the length of the paper the implementation of the VHDL code is

not show, however we explain how the arm and interfaces work on the tic-tac-toe game.

131

Norma Elva Chivez R. el. al

4.1 The “Tic-Tac-Toe” Game

This game is played on a board with nine different holes, which are all of the same
size and equipped with a pair of sensores, (The sensores are used to recognize if there is
or there isn’t a ball inside them, the sensores send a signal according to the presented
condition to a “FPGA™) 10 balls of the equivalent size are also used. The balls are di-
vided in two group colors, 5 green balls, which are the balls that the robotic arm shall use,
and 5 red balls, which are the balls that the Robotic’s arm challenger shall employ.

The game is developed as a normal tic-tac-toe game, although the Robotic arm, will
always have the first move. (This is so that the “FPGA” will be able to note a differ-
ence between the challenger’s moves, and the Robotic’s arm moves. What the
“FPGA” does to recognize this difference, is that it separates and stores in a distinct place
the moves that are an even number from the moves that are an odd number. The person
will clearly always make the even moves, while the robotic arm will always make the odd
ones.) This Robotic arm that plays “Tjc-Tac-Toe”, was programmed under an algorithm
in “VHDL” language, which doesn’t allow it to loose.

4.2 Power System

he robotic arm drives five DC

We use a FPGA as digital controller. The control of t
I 2 motors. The figure 3

motors, we used an L2930 driver, and each driver can contro
shows the control of two motors by driver.

e |

S s, 55
" K] §e
Soewso e, 3 }

v motar » ’
T ©.o| ‘\ - 4 (a e y B '__-..’.:'
gl ;;%;':;_:_L_LF} L ———
i f12 L)

A 9_lio oura (-

.. Nt T

TR ST & S gt
¢ >) i y ""i 4 "::;:J""'X \J’:

(s)
< — LR b]
= oTon's WL TN ITINS ST
s e

e e

Fig. 3 The control of two DC motors

132

Design and implementation of a Robotic Arm Able to Play “TIC-TAC-TOE"™ controlled ...

4.3 How the Controller Works

The robotic’s arm control is in the FPGA. The FPGA has as an input the signals that
come from the ultra red sensores. With these signals, the FPGA decides how the move-
ment of the robotic’s arm motors should be, according to the input, the FPGA sends
signals to the motors that will make them move in the desired way. Between the FPGA
and the motors, we have the interface of the drivers, which are used to boost the output
power of the signals that the FPGA sends to the Robotic arm. See Figure 4.

Y
Limit
Drivers Swiches Sensors
y 3
FPGA
Board P
-
VHDL Program

Fig. 4 Block Diagram of System Controller

5 RESULTS AND CONCLUSIONS

With all this, we created a robotic arm that is able to be an exciting tic tac toe chal-
lenger for any player who comes before it. The Robotic arm has good movements that
allow it to present a high exactitude when placing the ball inside the hole. On the other
hand, this Robotic arm never looses a game. It either ties or wins its matches. The longest
time that a game with the Robotic arm can last is 15 minutes approximately. In the foIN
lowing Figures (5, 6), we can see the Robotic arm in action:

133

Norma Elva Chivez R. el. al

P
.

IR R ¥ AN L I
VL p— L [y

.
-

]

» o1
.
Fig. 5 The arm reaching for a ball to throw Fig. 6 The arm making the first move in
the game.
References

[1] S.Brown, Z. Vranesic "Digital Logic with VHDL Design" McGraw Hill 2™ Edition.
[2] A.Lloris, A. Prieto, L. Parrilla "Sistemas digitales” Mc Graw Hill.

[3] J. Martin "Lenguajes formales y teorfa de la computacién” Mc Graw Hill, 3® Edicién
[4] D.Givone*Digital Principles and Design”, Mc Graw Hill.. 2" Edition

[S] A.Marcovitz “Introduction to Logic Design” ,Mc Graw Hill. 2" Edition.

(6] “FPGA Starter Kit Manual” Book, 4* Edition, Xilinxs .inc.

[7] “Getting Start” Manual, 5* Edition Altera. inc.

134

